当前位置: 新豪天地登录网址 > 科学研究 > 正文

北理工科学载荷在美送往空间站,我科学实验项

时间:2019-08-15 22:19来源:科学研究
北京时间6月4日凌晨,随着美国肯尼迪航天中心“3—2—1—点火”的指令,北京理工大学的两个墨绿色盒子,跟随“龙”飞船奔向国际空间站。 北京时间6月4日凌晨,随着美国肯尼迪航

北京时间6月4日凌晨,随着美国肯尼迪航天中心“3—2—1—点火”的指令,北京理工大学的两个墨绿色盒子,跟随“龙”飞船奔向国际空间站。

北京时间6月4日凌晨,随着美国肯尼迪航天中心321点火的指令,北京理工大学的两个墨绿色盒子,跟随龙飞船奔向国际空间站。 这两个小盒子,能自动变温、自动加料、自动开始和停止实验……阀、泵、反应器一个也不少,堪称魔盒。 北京理工大学生命学院副教授李晓琼介绍,科学载荷的盒子中有两组12块芯片,60个通道,可以模拟人体发育过程,在空间环境下对20个基因开展聚合酶链式反应中DNA错配规律研究。该实验项目将在国际空间站驻留一个月,这是中国空间科学项目首次进入国际空间站,实现了中美近二三十年空间领域合作零的突破。 去空间站做实验,却不带任何仪器?小小魔盒内乾坤几何?如何完成实验? 完成一个生物学实验需要很多仪器,一台一台搬上天是不可能的。项目团队带头人、北京理工大学教授邓玉林说,为了满足太空实验的要求,我们的设计把实验室嵌进芯片,用微流控芯片技术造芯片实验室,再把芯片装进魔盒。 邓玉林介绍,芯片实验室的实现源自一个奇妙的发现,1999年的《科学》杂志上登载了它的原理文章一位科学家发现,当装有红蓝墨水的管子细到微纳米级别时,二者的界面非常清晰,不会混合。 不混合意味着控制流体非常简单,一个拐弯就能起到阀的作用,泵、反应器、实验室的仪器等都可在小区域内实现。电子芯片是将电阻、二极管等元件集成到晶圆上。芯片实验室则是把微阀、微泵、微反应器都集成在芯片上。邓玉林说。 此外,芯片设计要考虑与地面完全不同的环境,例如,太空变温剧烈,会给芯片带来巨大的压力,容易产生破裂等。面对空间辐射、复杂机制等难题,项目团队勇于创新,完成了整体实验设计、核心芯片研制等研究工作。 此次实验将在空间飞行开始后,启动魔盒中的微流控芯片PCR仪,让抗体基因片段在空间环境下扩增。它们会承受γ射线、微重力等影响。李晓琼说,同时,地面将完成相同反应条件的对照实验。项目组会获得在轨飞行的DNA扩增产物和对照组DNA扩增产物,测序分析后,比较两者的不同,期望能总结出空间飞行导致基因突变发生的频率、位点等规律,进而探讨空间辐射及微重力环境下的基因诱变机理。 这是一次生物学理论的研究实验,神舟八号载荷实验的研究中,我们发现了在空间环境中DNA变异的一些新现象,推断空间环境造成的基因突变可能与生物分子进化有着重要的联系。邓玉林说,我们想通过这次机会,更进一步了解这个现象背后的规律。 事实上,利用芯片实验室,团队一个多月前已在天舟一号上进行过更复杂的全自动实验。那次的载荷是在芯片里模仿人体器官的环境,进行多种细胞自动共培养,是世界首例。 芯片里还镶嵌了影像设备,邓玉林说,我们采用了多焦融合技术,实现自动调焦,清晰地拍下免疫细胞的迁移数量、途径和方向。项目组最终获得的十几个G容量的照片中,甚至可以讲出一个救死扶伤的故事神经细胞受伤后,发出信号募集免疫细胞,免疫细胞纷纷迁移前来救援。 我们的目标是未来让我国的空间站成为国家太空实验室,希望各行业各领域都能去做实验。邓玉林说。来源: 中国科技网-科技日报

图片 1

北理工为国际空间站带来首个中国项目

这两个小盒子,能自动变温、自动加料、自动开始和停止实验……阀、泵、反应器一个也不少,堪称“魔盒”。

  [环球网军事报道 记者 刘扬]北京时间4日凌晨5时7分,由北京理工大学邓玉林教授团队研制的“空间环境下在PCR反应中DNA错配规律研究的科学载荷”在美国佛罗里达州肯尼迪空间中心由负责运营国际空间站科学研究平台的NanoRacks公司通过SpaceX公司“猎鹰9号”火箭乘坐龙飞船送往国际空间站。该载荷将在空间辐射及微重力环境下,在轨开展抗体编码基因的突变规律研究。本次搭载项目的顺利实施,是中国空间科学项目首次登入国际空间站,标志着中美空间科学合作取得了“零”的突破。根据双方协议,美方将把北理工校旗带到国际空间站,由宇航员在空间站内展开,这是中国高校校旗首次出现在国际空间站内,意义深远。

北京时间今天5时7分,由北京理工大学邓玉林教授团队研制的“空间环境下在PCR反应中DNA错配规律研究的科学载荷”在美国佛罗里达州肯尼迪空间中心乘坐龙飞船送往国际空间站,预计美国当地时间6月6日龙飞船与空间站对接。该载荷将在空间辐射及微重力环境下,在轨开展抗体编码基因的突变规律研究。

北京理工大学生命学院副教授李晓琼介绍,科学载荷的盒子中有两组12块芯片,60个通道,可以模拟人体发育过程,在空间环境下对20个基因开展聚合酶链式反应中DNA错配规律研究。该实验项目将在国际空间站驻留一个月,这是中国空间科学项目首次进入国际空间站,实现了中美近二三十年空间领域合作“零”的突破。

  本次登入国际空间站的北理工空间生命科学载荷,是科技部重大科学仪器开发专项和国防科工局民用航天专项支持下,由北京理工大学生命学院教授、国际宇航科学院院士邓玉林团队自主创新研制,是继该团队所研制的载荷在2011年神舟八号搭载、2016年长征七号首飞搭载以及2017年天舟一号搭载之后又一次实现太空之旅。此次北理工载荷将被带入到国际空间站美国实验舱,实验数据将传回给北理工研究人员进行后续的科学研究。

本次搭载项目的顺利实施,是中国空间科学项目首次登入国际空间站,标志着中美空间科学合作取得了零的突破。2011年,美国国会曾出台“沃尔夫法案”禁止美国国家航空航天局及与NASA有合同关系的美国航天企业与中国航天领域进行任何接触和合作,该法案为阻止中美太空合作的“壁垒”。邓玉林团队大胆地通过商业合作模式,在2015年8月与美国负责运营国际空间站科学研究平台的NanoRacks公司签署协议,并通过各项审查,为国际空间站带来首个中国项目,为中美太空合作开辟了新途径。

去空间站做实验,却不带任何仪器?小小“魔盒”内“乾坤”几何?如何完成实验?

  “小实验”破冰中美太空“大合作”

据邓玉林介绍,在之前“神舟八号”载荷实验的研究中,该团队推断空间环境之于基因突变可能与生物分子进化有着重要的联系。鉴于抗体是人体中较为保守的重要生物学元素,他们将抗体编码基因片段作为研究空间环境对分子进化影响的模型,开展了此次空间实验。

“完成一个生物学实验需要很多仪器,一台一台搬上天是不可能的。”项目团队带头人、北京理工大学教授邓玉林说,“为了满足太空实验的要求,我们的设计把实验室嵌进芯片,用‘微流控芯片技术’造‘芯片实验室’,再把芯片装进‘魔盒’。”

  能够由美方搭载,并进入国际空间站,除了北理工在空间生命科学研究领域取得的成绩得到国际充分认可外,也得益于中方团队对相关法律的认真研究,并形成突破。2011年,美国国会曾出台“沃尔夫法案”禁止美国国家航空航天局(NASA)及与NASA有合同关系的美国航天企业与中国航天领域进行任何接触和合作,该法案为组织中美太空合作的“壁垒”。北理工生命学院邓玉林教授团队带着北理工人特有的“敢为天下先”创新精神,大胆尝试通过商业合作模式,在2015年8月与美国NanoRacks公司签署协议,并通过各项审查,为国际空间站带去首个中国项目,受到各方广泛关注。

团队主要成员、北京理工大学生命学院副教授李晓琼表示,此次载荷是采用微型微流控PCR仪,对抗体DNA片段进行在轨飞行状态下的基因扩增,来模拟人类生命的延续与发展。在空间飞行结束后,分析基因突变规律,进而探讨空间辐射及微重力环境下的基因诱变机理。

邓玉林介绍,“芯片实验室”的实现源自一个奇妙的发现,1999年的《科学》杂志上登载了它的原理文章——一位科学家发现,当装有红蓝墨水的管子细到微纳米级别时,二者的界面非常清晰,不会混合。

  此次搭载是中美两国30年来在空间领域的首次合作,具有“破冰”之意义,通过商业合作模式实现中美空间站领域合作,也为中美太空合作开辟了新的途径,开创了中美空间领域合作的新局面。

据悉,该项目是首次在国际上利用空间环境开展“微进化”研究。

“不混合”意味着控制流体非常简单,一个拐弯就能起到“阀”的作用,泵、反应器、实验室的仪器等都可在小区域内实现。“电子芯片是将电阻、二极管等元件集成到晶圆上。‘芯片实验室’则是把微阀、微泵、微反应器都集成在芯片上。”邓玉林说。

  “小小”载荷开展“大量”研究

另根据双方协议,美方还将把北理工校旗带到国际空间站,由宇航员在空间站内展开,这也是中国高校校旗首次出现在国际空间站内。

此外,芯片设计要考虑与地面完全不同的环境,例如,太空变温剧烈,会给芯片带来巨大的压力,容易产生破裂等。面对空间辐射、复杂机制等难题,项目团队勇于创新,完成了整体实验设计、核心芯片研制等研究工作。

  本次北理工的空间载荷从关注航天员生命健康切入,延展到空间环境影响微(分子)进化的探索。空间飞行过程中航天员将面临多种健康威胁,其中空间辐射和微重力是导致航天员生理功能失调的重要因素。团队负责人邓玉林介绍到:“在神舟八号载荷实验的研究中,我们发现了在空间环境中DNA变异的一些新现象,从而推断空间环境之于基因突变可能与生物分子进化有着重要的联系。鉴于抗体是人体中较为保守的重要生物学元素,我们提出大胆的创新设想,将抗体编码基因片段作为研究空间环境对分子进化影响的模型,开展了此次空间实验。”

此次实验将在空间飞行开始后,启动“魔盒”中的微流控芯片PCR仪,让抗体基因片段在空间环境下扩增。“它们会承受γ射线、微重力等影响。”李晓琼说,“同时,地面将完成相同反应条件的对照实验。”项目组会获得在轨飞行的“DNA扩增产物”和“对照组DNA扩增产物”,测序分析后,比较两者的不同,期望能总结出空间飞行导致基因突变发生的频率、位点等规律,进而探讨空间辐射及微重力环境下的基因诱变机理。

  据团队主要成员北京理工大学生命学院副教授李晓琼介绍,此次载荷是采用微型微流控PCR仪,对抗体DNA片段进行在轨飞行状态下的基因扩增,来模拟人类生命的延续与发展。在空间飞行结束后,分析基因突变规律,进而探讨空间辐射及微重力环境下的基因诱变机理。

这是一次生物学理论的研究实验,“‘神舟八号’载荷实验的研究中,我们发现了在空间环境中DNA变异的一些新现象,推断空间环境造成的基因突变可能与生物分子进化有着重要的联系。”邓玉林说,“我们想通过这次机会,更进一步了解这个现象背后的规律。”

  “这是一项基础性生命科学研究,具有重大的科学意义。团队在国际上首次利用空间环境开展‘微进化’研究,一方面有助于我们认识空间环境对于生物进化规律的影响,另一方面当我们掌握基因突变规律,对其做出相应改变和修饰,以更好的适应环境,对预防和控制疾病有着重要意义,对人类发展具有重要的影响。”团队成员生命学院王睿博士介绍到。

事实上,利用“芯片实验室”,团队一个多月前已在“天舟一号”上进行过更复杂的全自动实验。那次的载荷是在芯片里模仿人体器官的环境,进行多种细胞自动共培养,是世界首例。

  此次空间实验不仅具有理论上的创新,在技术上也做出了多种新的探索。据介绍,团队利用微流控芯片模拟人体发育过程,利用扩增技术模拟细胞中基因复制,实现对生命扩增与发展的动态过程模拟,从而掌握环境对基因扩增的影响;同时,团队突破了在太空变温条件下实现基因扩增的技术难题,“温度过高会给芯片带来巨大的压力,容易产生破裂。2011年‘神八’搭载时,我们就攻克了这项难关——用微流控芯片来实现变温PCR扩增技术,在‘狭小’的载荷仪器中,开展‘大量’的科学研究。”李晓琼说。本次搭载共有两组、12块芯片,60个通道,将对20个基因在空间环境下进行突变规律的研究。“能在体积如此严苛的载荷条件下,实现20种基因的突变规律研究,这一技术在国际上也是领先的。”王睿说。

“芯片里还镶嵌了影像设备,”邓玉林说,“我们采用了多焦融合技术,实现自动调焦,清晰地拍下免疫细胞的迁移数量、途径和方向。”项目组最终获得的十几个G容量的照片中,甚至可以讲出一个“救死扶伤”的故事——神经细胞受伤后,发出信号募集免疫细胞,免疫细胞纷纷迁移前来“救援”。

  未来还将与欧洲太空局合作

“我们的目标是未来让我国的空间站成为国家太空实验室,希望各行业各领域都能去做实验。”邓玉林说。

  神八、长七、天舟一号、国际空间站……每一次搭载都彰显着北理工国防新型交叉学科空间生物与医学工程在仪表、自动控制、信息电子与生命科学、医学的交叉融合方面已经形成特色,展现出雄厚的技术实力,同时也在人才培养和团队建设方面取得了可喜的成绩。这次任务由十余人的队伍完成,分为科学和载荷两个部分,每个部分都由青年教师和学生构成。邓玉林用“敢想、敢干、敢创新”来形容团队中的师生。他说:“无论是科学还是载荷,我们都做到了多项创新,面对空间辐射、复杂机制、规律难以把握、整体实验设计、核心芯片研制等一个又一个难题,我们从老师到博士生,每个人都非常刻苦努力,严格按照时间节点完成,团队开辟了一种有效的模式,‘青年教师 学生’,并密切与企业对接,可以说是非常成功的模式范例。”

  邓玉林坦言,一项项科研项目的开展不仅仅收获了丰富的科研成果,更锻炼了学生们攻坚克难的科研态度,加强了师生们的国际交往能力,历练了他们的大局意识、全局精神,对于未来独立科研和技术开发提供了难得的机遇。

  近年来,北京理工大学瞄准世界科技前沿,立足服务国家重大战略,充分发挥自身多年来在国防科技领域研究中积累的工程技术优势,加强生物医学工程学科建设,着力学科深度交叉融合,实现了在空间生命科学领域的快速发展。在国家重大项目的资助下,在上级和兄弟单位的大力支持下,抓住机会,实现北理工空间生命载荷的多次搭载,为我国深空探测研究做出贡献,在国际空间研究领域形成影响。下一阶段,北理工与欧洲太空局(ESA)在国际空间站的合作已经启动,相信在未来,北理工将在人类探索宇宙空间的伟大征程中,写下属于自己的精彩笔触。

编辑:科学研究 本文来源:北理工科学载荷在美送往空间站,我科学实验项

关键词: